NAVAL POSTGRADUATE SCHOOL Monterey, California

EC 3550 MIDTERM EXAM I 10/92 Po

- This exam is open book and notes.
- There are three problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- Be *sure* to include units in your answers.
- Please circle or underline your answers.
- \bullet Do NOT do any work on this sheet.
- Show ALL work.

1	
2	
3	
Total	

Name:		
Name.		
TACHTILL.		

- 1. Consider an 8/125 single-mode fiber with $n_2 = 1.450$ and $\Delta = 0.3\%$. The source operates at 1320 nm with a linewidth of 50 nm. Calculate the ratio if the waveguide dispersion delay $\Delta_{\rm wg}$ to the material dispersion delay $\Delta_{\rm mat}$.
- 2. A certain laser, operating at 1550 nm, is predicted to have its power output fall to one—half of its initial value after 5 years of operation.

This laser is attached to a fiber link that has 30 km of fiber with a fiber loss of 0.8 dB/km. (All other losses are negligible.) If the power into the fiber at the transmitter end is 800 μ W when the link is first put into operation, calculate power level at the receiver end of the fiber (in units of μ W) after 12 years of operation.

- 3. Dynamic fatigue testing of fiber samples reveals that the stress corrosion parameter of a fiber, n, has a value of 30.
 - Lifetime prediction analysis shows that a piece of the fiber, prooftested at 250 $MN \cdot m^{-2}$ has a predicted lifetime of 10^5 seconds at a stress level of $100 MN \cdot m^{-2}$.

Calculate the prooftest level required (in terms of the fiber strain) to ensure a fiber lifetime of 1 year at a stress level of 200 $MN \cdot m^{-2}$.